
www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

CMSC201
Computer Science I for Majors

Lecture 09 – Strings

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Last Class We Covered

• Lists and what they are used for

– Getting the length of a list

– Operations like append() and remove()

– Iterating over a list using a while loop

– Indexing

• Membership “in” operator

• Methods vs Functions

2

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted3

Any Questions from Last Time?

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Today’s Objectives

• To better understand the string data type

– Learn how they are represented

– Learn about and use some of their built-in methods

• Slicing and concatenation

• Escape sequences

• lower() and upper()

• strip() and whitespace

• split() and join()

4

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted5

Strings

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

The String Data Type

• Text is represented in programs by
the string data type

• A string is a sequence of characters
enclosed within double quotes (")
or single quotes (')

– Sometimes called
quotation marks or
apostrophes

6

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Getting Strings as Input

• Using input() automatically gets a string

>>> firstName = input("Please enter your name: ")

Please enter your name: Shakira

>>> type(firstName)

<class 'str'>

>>> print(firstName, firstName)

Shakira Shakira

7

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Accessing Individual Characters

• We can access the individual characters
in a string through indexing

– Characters are the letters, numbers, spaces, and
symbols that make up a string

• The characters in a string are numbered
starting from the left, beginning with 0

– Just like in lists!

8

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Syntax of Accessing Characters

• The general form is

strName[expression]

• Where strName is the name of the string
variable and expression determines
which character is selected from the string

9

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Example String

>>> greet = "Hello Bob"

>>> greet[0]

'H'

>>> print(greet[0], greet[2], greet[4])

H l o

>>> x = 8

>>> print(greet[x - 2])

B

10

0 1 2 3 4 5 6 7 8

H e l l o B o b

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Example String

11

0 1 2 3 4 5 6 7 8

H e l l o B o b

• In a string of n characters, the last
character is at position n-1 since we
start counting with 0

• So how can we access the last letter,
regardless of the string’s length?
greet[len(greet) – 1]

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Changing String Case

• Python has many, many ways to interact with
strings, and we will cover them in detail soon

• For now, here are two very useful methods:

s.lower() – copy of s in all lowercase letters

s.upper() – copy of s in all uppercase letters

• Why would we need to use these?

–Remember, Python is case-sensitive!

12

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted13

Concatenation

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Forming New Strings - Concatenation

• We can put two or more strings together to
form a longer string

• Concatenation “glues” two strings together

>>> "Peanut Butter" + "Jelly"

'Peanut ButterJelly'

>>> "Peanut Butter" + " & " + "Jelly"

'Peanut Butter & Jelly'

14

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Rules of Concatenation

• Concatenation does not automatically include
spaces between the strings
>>> "Smash" + "together"

'Smashtogether'

• Concatenation can only be done with strings!

– So how would we concatenate an integer?

>>> "CMSC " + str(201)

'CMSC 201'

15

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Common Use for Concatenation

• input() only accepts a single string

– Can’t use commas like we do with print()

• In order to create a single string for
input(), you must use concatenation

classNum = 201

grade = input("Grade in " + str(classNum) + "? ")

16

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Sentinels and Concatenation

• To take full advantage of sentinel constants,
use them in the input prompts as well

• Instead of:
name = input("Name, X to quit: ")

• Concatenate to include the sentinel constant
name = input("Name, " + EXIT + " to quit: ")

17

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Sentinels, input(), and Concatenation

• We can even get really lazy, and create the
message string before using it in input()

SENTINEL = -1

def main():

msg = "Enter a grade, or '" + str(SENTINEL) + "' to quit: "

grade = int(input(msg))

while grade != SENTINEL:

print("Congrats on getting a", grade, "in the class!")

grade = int(input(msg))

main()

18

don’t forget to cast
to string if needed

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted19

Substrings and Slicing

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Substrings

• Indexing only returns a single character
from the entire string

• We can access a substring using
a process called slicing

20

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Slicing Syntax

• The general form is

strName[start:end]

• start and end must evaluate to integers

– The substring begins at index start

– The substring ends before index end

• The letter at index end is not included

21

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Slicing Examples

22

0 1 2 3 4 5 6 7 8

H e l l o B o b

>>> greet[0:2]

'He'

>>> greet[7:9]

'ob'

>>> greet[:5]

'Hello'

>>> greet[1:]

'ello Bob'

>>> greet[:]

'Hello Bob'

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Specifics of Slicing

• If start or end are missing, then the
start or end of the string is used instead

• The index of end must come after
the index of start

– What would the substring greet[1:1] be?

''

– An empty string!

23

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

String Operations in Python

• All of this also applies to lists!

– Two lists can be concatenated together

– A sublist can be sliced from another list
24

Operator Meaning

+

stringVar[#]

stringVar[#:#]

len(stringVar)

Concatenation

Indexing

Slicing

Length

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted25

Escape Sequences

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Special Characters

• Just like Python has special keywords…

– and, while, True, etc.

• It also has special characters

– Single quote ('), double quote ("), etc.

• How can we print out a " as part of a string?
print("And I shouted "hey!" at him.")

– What’s going to happen here?
– SyntaxError: EOL while scanning string literal

26

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Backslash: Escape Sequences

• The backslash character (\) is used to
“escape” a special character in Python

– Tells Python not to treat it as special

• The backslash character goes in front of the
character we want to “escape”

>>> print("And I shouted \"hey!\"")

And I shouted "hey!"

27

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Common Escape Sequences

28

Escape Sequence Purpose

Escaping special characters

\' Print a single quote

\" Print a double quote

\\ Print a backslash

Inserting a special character

\t Print a tab

\n Print a new line (“enter”)

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Escape Sequences Example
special1 = "I\tlove tabs."

print(special1)

I love tabs.

special2 = "It's time to\nsplit!"

print(special2)

It's time to

split!

special3 = "Keep \\ em \\ separated"

print(special3)

Keep \ em \ separated

29

\t adds a tab

\n adds a newline

\\ adds a single backslash

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Escape Sequences Example
special1 = "I\tlove tabs."

print(special1)

I love tabs.

special2 = "It's time to\nsplit!"

print(special2)

It's time to

split!

special3 = "Keep \\ em \\ separated"

print(special3)

Keep \ em \ separated

30

Note that there are no
spaces around the

escape sequences, but
they work fine. What
would happen if we
added a space after
\t or \n here?

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

How Python Handles Escape Sequences

• Escape sequences look like two characters to us

• Python treats them as a single character

example1 = "dog\n"

example2 = "\tcat"

31

0 1 2 3

d o g \n

0 1 2 3

\t c a t

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

The “end” of print()

• We’ve mentioned the use of end="" within
a print() in a few of the homeworks

– By default, print() uses \n as its ending

• We can use end= to change this
print("No newlines", end="")

print("More space please", end="\n\n")

print("Smile!", end=" :)\n")

– Remember to put a \n in if you still want one!

32

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted33

Whitespace

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Whitespace

• Whitespace is any “blank” character, that
represents space between other characters

• For example: tabs, newlines, and spaces
"\t" "\n" " "

• Whitespace can cause similar
strings to not be equivalent
>>> "dog" == " dog"

False

34

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Removing Whitespace

• To remove all whitespace from the start and end
of a string, we can use a method called strip()

spacedOut = spacedOut.strip()

35

\t c a t s \n
spacedOut

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Removing Whitespace

• To remove all whitespace from the start and end
of a string, we can use a method called strip()

spacedOut = spacedOut.strip()

36

\t c a t s \n
spacedOut

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Removing Whitespace

• To remove all whitespace from the start and end
of a string, we can use a method called strip()

spacedOut = spacedOut.strip()

37

\t c a t s \n
spacedOut

notice that strip() does
not remove “interior” spacing

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted38

String Splitting

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

String Splitting

• We can also break a string into pieces

– Stored as a list of strings

• The method is called split(), and it has
two ways it can be used:

–Break the string up by its whitespace

–Break the string up by a specific character

39

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Splitting by Whitespace

• Calling split() with nothing inside the
parentheses will split on all whitespace

– Even the “interior” whitespace

>>> line = "hello world \n"

>>> line.split()

['hello', 'world']

>>> love = "\t\nI love\t\t\nwhitespace\n "

>>> love.split()

['I', 'love', 'whitespace']

40

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Splitting by Specific Character

• Calling split() with a string in it, we can
remove a specific character (or more than one)

>>> under = "once_twice_thrice"

>>> under.split("_")

['once', 'twice', 'thrice']

>>> double = "hello how ill are all of your llamas?"

>>> double.split("ll")

['he', 'o how i', ' are a', ' of your ', 'amas?']

41

these character(s) that
we want to remove are

called the delimiter

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Splitting by Specific Character

• Calling split() with a string in it, we can
remove a specific character (or more than one)

>>> under = "once_twice_thrice"

>>> under.split("_")

['once', 'twice', 'thrice']

>>> double = "hello how ill are all of your llamas?"

>>> double.split("ll")

['he', 'o how i', ' are a', ' of your ', 'amas?']

42

notice that it didn’t remove the whitespace

these character(s) that
we want to remove are

called the delimiter

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Practice: Splitting

• Use split() to solve the following problems

• Split this string on its whitespace:
daft = "around \t the \nworld"

• Split this string on the double t’s (tt):
adorable = "nutty otters making lattes"

43

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Practice: Splitting

• Use split() to solve the following problems

• Split this string on its whitespace:
daft = "around \t the \nworld"

daft.split()

• Split this string on the double t’s (tt):
adorable = "nutty otters making lattes"

adorable.split("tt")

44

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Looping over Split Strings

• Splitting a string creates a list of smaller strings

• Using a while loop and this list, we can
iterate over each individual word (or token)

words = sentence.split()

index = 0

while index < len(words):

print(words[index])

index += 1

45

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Example: Looping over Split Strings
lyrics = "stars in their eyes"

lyricWords = lyrics.split()

index = 0

while index < len(lyricWords):

print("*" + lyricWords[index] + "*")

index += 1

stars

in

their

eyes

46

what does this line of code do?

append a “*” to the front and end
of each list element, then print

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted47

String Joining

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Joining Strings

• We can also join a list of strings back together!

– The syntax looks different from split()

–And it only works on a list of strings

"X".join(list_of_strings)

48

the delimiter (what we will use to join the strings)

method
name

the list of strings we want to join together

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Example: Joining Strings
>>> names = ['Alice', 'Bob', 'Carl', 'Dana', 'Eve']

>>> "_".join(names)

'Alice_Bob_Carl_Dana_Eve'

• We can also use more than one character as
our delimiter if we want

>>> " <3 ".join(names)

'Alice <3 Bob <3 Carl <3 Dana <3 Eve'

49

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

split() vs join()

50

• The split() method

– Takes in a single string

– Creates a list of strings

– Splits on given character(s), or on all whitespace

• The join() method

– Takes in a list of strings

– Returns a single string

– Joins together with a user-chosen delimiter

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

String and List Operations

• Many of the operations we’ve learned are
possible to use on strings and on lists

51

Operation Strings Lists

Concatenation +

Indexing []

Slicing [:]

.lower() / .upper()

.append() / .remove()

len()

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

• CTRL+Z

– “Minimizes” the emacs window

• fg

– Used in the terminal, and “maximizes” it again

• Useful when coding and testing

– Save and minimize, run code, maximize it to edit

– Keeps the kill ring, where you are in the file, etc.
52

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Announcements

• HW 4 is out on Blackboard now

– Due by Friday (October 5th) at 8:59:59 PM

• Lab 5 is out on Blackboard as well.

– Due Thurs (October 4th) at 8:59:59PM

– Do this before you take the midterm!

• Midterm is in class, October 3rd and 4th

– Survey #1 will be released this week as well

53

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Image Sources
• Sewing thread (adapted from):

– https://pixabay.com/p-936467

• Cheese slices:

– http://pngimg.com/download/4276

• Space dog (adapted from):

– https://commons.wikimedia.org/wiki/File:Space_dog_illustration.png

54

