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CMSC201
Computer Science I for Majors

Lecture 09 – Strings
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Last Class We Covered

• Lists and what they are used for

– Getting the length of a list

– Operations like append() and remove()

– Iterating over a list using a while loop

– Indexing

• Membership “in” operator

• Methods vs Functions
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Any Questions from Last Time?
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Today’s Objectives

• To better understand the string data type

– Learn how they are represented

– Learn about and use some of their built-in methods

• Slicing and concatenation

• Escape sequences

• lower() and upper()

• strip() and whitespace

• split() and join()

4
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Strings
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The String Data Type

• Text is represented in programs by 
the string data type

• A string is a sequence of characters 
enclosed within double quotes (") 
or single quotes (')

– Sometimes called 
quotation marks or 
apostrophes

6
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Getting Strings as Input

• Using input() automatically gets a string

>>> firstName = input("Please enter your name: ")

Please enter your name: Shakira

>>> type(firstName)

<class 'str'>

>>> print(firstName, firstName)

Shakira Shakira

7
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Accessing Individual Characters

• We can access the individual characters 
in a string through indexing

– Characters are the letters, numbers, spaces, and 
symbols that make up a string

• The characters in a string are numbered 
starting from the left, beginning with 0

– Just like in lists!

8
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Syntax of Accessing Characters

• The general form is

strName[expression]

• Where strName is the name of the string 
variable and expression determines 
which character is selected from the string

9
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Example String

>>> greet = "Hello Bob"

>>> greet[0]

'H'

>>> print(greet[0], greet[2], greet[4])

H l o

>>> x = 8

>>> print(greet[x - 2])

B

10

0 1 2 3 4 5 6 7 8

H e l l o B o b
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Example String

11

0 1 2 3 4 5 6 7 8

H e l l o B o b

• In a string of n characters, the last 
character is at position n-1 since we 
start counting with 0

• So how can we access the last letter, 
regardless of the string’s length?
greet[ len(greet) – 1 ]
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Changing String Case

• Python has many, many ways to interact with 
strings, and we will cover them in detail soon

• For now, here are two very useful methods:

s.lower() – copy of s in all lowercase letters

s.upper() – copy of s in all uppercase letters

• Why would we need to use these?

–Remember, Python is case-sensitive!

12
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Concatenation
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Forming New Strings - Concatenation

• We can put two or more strings together to 
form a longer string

• Concatenation “glues” two strings together

>>> "Peanut Butter" + "Jelly"

'Peanut ButterJelly'

>>> "Peanut Butter" + " & " + "Jelly"

'Peanut Butter & Jelly'

14
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Rules of Concatenation

• Concatenation does not automatically include 
spaces between the strings
>>> "Smash" + "together"

'Smashtogether'

• Concatenation can only be done with strings!

– So how would we concatenate an integer?

>>> "CMSC " + str(201)

'CMSC 201'

15
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Common Use for Concatenation

• input() only accepts a single string

– Can’t use commas like we do with print()

• In order to create a single string for 
input(), you must use concatenation

classNum = 201

grade = input("Grade in " + str(classNum) + "? ")

16
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Sentinels and Concatenation

• To take full advantage of sentinel constants, 
use them in the input prompts as well

• Instead of:
name = input("Name, X to quit: ")

• Concatenate to include the sentinel constant
name = input("Name, " + EXIT + " to quit: ")

17
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Sentinels, input(), and Concatenation

• We can even get really lazy, and create the 
message string before using it in input()

SENTINEL = -1

def main():

msg = "Enter a grade, or '" + str(SENTINEL) + "' to quit: "

grade = int(input(msg))

while grade != SENTINEL:

print("Congrats on getting a", grade, "in the class!")

grade = int(input(msg))

main()

18

don’t forget to cast 
to string if needed
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Substrings and Slicing
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Substrings

• Indexing only returns a single character 
from the entire string

• We can access a substring using
a process called slicing

20
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Slicing Syntax

• The general form is

strName[start:end]

• start and end must evaluate to integers

– The substring begins at index start

– The substring ends before index end

• The letter at index end is not included

21
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Slicing Examples

22

0 1 2 3 4 5 6 7 8

H e l l o B o b

>>> greet[0:2]

'He'

>>> greet[7:9]

'ob'

>>> greet[:5]

'Hello'

>>> greet[1:]

'ello Bob'

>>> greet[:]

'Hello Bob'
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Specifics of Slicing

• If start or end are missing, then the 
start or end of the string is used instead

• The index of end must come after
the index of start

– What would the substring greet[1:1] be?

''

– An empty string!

23
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String Operations in Python

• All of this also applies to lists!

– Two lists can be concatenated together

– A sublist can be sliced from another list
24

Operator Meaning

+

stringVar[#]

stringVar[#:#]

len(stringVar)

Concatenation

Indexing

Slicing

Length
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Escape Sequences
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Special Characters

• Just like Python has special keywords…

– and, while, True, etc.

• It also has special characters

– Single quote ('), double quote ("), etc.

• How can we print out a " as part of a string?
print("And I shouted "hey!" at him.")

– What’s going to happen here?
– SyntaxError: EOL while scanning string literal

26
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Backslash: Escape Sequences

• The backslash character (\) is used to 
“escape” a special character in Python

– Tells Python not to treat it as special

• The backslash character goes in front of the 
character we want to “escape”

>>> print("And I shouted \"hey!\"")

And I shouted "hey!"

27
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Common Escape Sequences

28

Escape Sequence Purpose

Escaping special characters

\' Print a single quote

\" Print a double quote

\\ Print a backslash

Inserting a special character

\t Print a tab

\n Print a new line (“enter”)
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Escape Sequences Example
special1 = "I\tlove tabs."

print(special1)

I       love tabs.

special2 = "It's time to\nsplit!"

print(special2)

It's time to

split!

special3 = "Keep \\ em \\ separated"

print(special3)

Keep \ em \ separated

29

\t adds a tab

\n adds a newline

\\ adds a single backslash
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Escape Sequences Example
special1 = "I\tlove tabs."

print(special1)

I       love tabs.

special2 = "It's time to\nsplit!"

print(special2)

It's time to

split!

special3 = "Keep \\ em \\ separated"

print(special3)

Keep \ em \ separated

30

Note that there are no 
spaces around the 

escape sequences, but 
they work fine.  What 
would happen if we 
added a space after
\t or \n here?
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How Python Handles Escape Sequences

• Escape sequences look like two characters to us

• Python treats them as a single character

example1 = "dog\n"

example2 = "\tcat"

31

0 1 2 3

d o g \n

0 1 2 3

\t c a t
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The “end” of print()

• We’ve mentioned the use of end="" within 
a print() in a few of the homeworks

– By default, print() uses \n as its ending

• We can use end= to change this
print("No newlines", end="")

print("More space please", end="\n\n")

print("Smile!", end=" :)\n")

– Remember to put a \n in if you still want one!

32
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Whitespace
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Whitespace

• Whitespace is any “blank” character, that 
represents space between other characters

• For example: tabs, newlines, and spaces
"\t"  "\n"    " "

• Whitespace can cause similar 
strings to not be equivalent
>>> "dog" == " dog"

False

34
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Removing Whitespace

• To remove all whitespace from the start and end
of a string, we can use a method called strip()

spacedOut = spacedOut.strip()

35

\t c a t s \n
spacedOut
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Removing Whitespace

• To remove all whitespace from the start and end
of a string, we can use a method called strip()

spacedOut = spacedOut.strip()

36

\t c a t s \n
spacedOut
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Removing Whitespace

• To remove all whitespace from the start and end
of a string, we can use a method called strip()

spacedOut = spacedOut.strip()

37

\t c a t s \n
spacedOut

notice that strip() does 
not remove “interior” spacing
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String Splitting
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String Splitting

• We can also break a string into pieces

– Stored as a list of strings

• The method is called split(), and it has 
two ways it can be used:

–Break the string up by its whitespace

–Break the string up by a specific character

39
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Splitting by Whitespace

• Calling split() with nothing inside the 
parentheses will split on all whitespace

– Even the “interior” whitespace

>>> line = "hello world \n"

>>> line.split()

['hello', 'world']

>>> love = "\t\nI love\t\t\nwhitespace\n  "

>>> love.split()

['I', 'love', 'whitespace']

40
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Splitting by Specific Character

• Calling split() with a string in it, we can 
remove a specific character (or more than one)

>>> under = "once_twice_thrice"

>>> under.split("_")

['once', 'twice', 'thrice']

>>> double = "hello how ill are all of your llamas?"

>>> double.split("ll")

['he', 'o how i', ' are a', ' of your ', 'amas?']

41

these character(s) that 
we want to remove are 

called the delimiter
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Splitting by Specific Character

• Calling split() with a string in it, we can 
remove a specific character (or more than one)

>>> under = "once_twice_thrice"

>>> under.split("_")

['once', 'twice', 'thrice']

>>> double = "hello how ill are all of your llamas?"

>>> double.split("ll")

['he', 'o how i', ' are a', ' of your ', 'amas?']

42

notice that it didn’t remove the whitespace

these character(s) that 
we want to remove are 

called the delimiter
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Practice: Splitting

• Use split() to solve the following problems

• Split this string on its whitespace:
daft = "around \t the \nworld"

• Split this string on the double t’s (tt):
adorable = "nutty otters making lattes"

43
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Practice: Splitting

• Use split() to solve the following problems

• Split this string on its whitespace:
daft = "around \t the \nworld"

daft.split()

• Split this string on the double t’s (tt):
adorable = "nutty otters making lattes"

adorable.split("tt")

44
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Looping over Split Strings

• Splitting a string creates a list of smaller strings

• Using a while loop and this list, we can 
iterate over each individual word (or token)

words = sentence.split()

index = 0

while index < len(words):

print(words[index])

index += 1

45
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Example: Looping over Split Strings
lyrics = "stars in their eyes"

lyricWords = lyrics.split()

index = 0

while index < len(lyricWords):

print("*" + lyricWords[index] + "*")

index += 1

*stars*

*in*

*their*

*eyes*

46

what does this line of code do?

append a “*” to the front and end 
of each list element, then print



www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted47

String Joining
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Joining Strings

• We can also join a list of strings back together!

– The syntax looks different from split()

–And it only works on a list of strings

"X".join(list_of_strings)

48

the delimiter (what we will use to join the strings)

method 
name

the list of strings we want to join together
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Example: Joining Strings
>>> names = ['Alice', 'Bob', 'Carl', 'Dana', 'Eve']

>>> "_".join(names)

'Alice_Bob_Carl_Dana_Eve'

• We can also use more than one character as 
our delimiter if we want

>>> " <3 ".join(names)

'Alice <3 Bob <3 Carl <3 Dana <3 Eve'

49
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split() vs join()

50

• The split() method

– Takes in a single string

– Creates a list of strings

– Splits on given character(s), or on all whitespace

• The join() method

– Takes in a list of strings

– Returns a single string

– Joins together with a user-chosen delimiter
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String and List Operations

• Many of the operations we’ve learned are 
possible to use on strings and on lists

51

Operation Strings Lists

Concatenation +

Indexing [ ]

Slicing [ : ]

.lower() / .upper()

.append() / .remove()

len()
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• CTRL+Z

– “Minimizes” the emacs window

• fg

– Used in the terminal, and “maximizes” it again

• Useful when coding and testing

– Save and minimize, run code, maximize it to edit

– Keeps the kill ring, where you are in the file, etc.
52
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Announcements

• HW 4 is out on Blackboard now

– Due by Friday (October 5th) at 8:59:59 PM

• Lab 5 is out on Blackboard as well.

– Due Thurs (October 4th) at 8:59:59PM

– Do this before you take the midterm!

• Midterm is in class, October 3rd and 4th

– Survey #1 will be released this week as well

53
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Image Sources
• Sewing thread (adapted from):

– https://pixabay.com/p-936467

• Cheese slices:

– http://pngimg.com/download/4276

• Space dog (adapted from):

– https://commons.wikimedia.org/wiki/File:Space_dog_illustration.png
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